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This is the second part of a three-part study of the stability of vertically oriented 
double-diffusive interfaces having an imposed vertical stable temperature gradient. 
In this study, flow is forced within a fluid of infinite extent by a prescribed excess 
of compositionally buoyant material between two parallel interfaces. Compositional 
diffusivity is ignored while thermal diffusivity and viscosity are finite. The stability of 
the interfaces is analysed first in the limit that they are close together (compared with 
the salt-finger lengthscale), then for general spacing. Attention is focused on whether 
the preferred mode of instability is varicose or sinuous and whether its wavevector is 
vertical or oblique. 

The interfaces are found to be unstable for some wavenumber for all values of the 
Prandtl number and interface spacing. The preferred mode of instability for closely 
spaced interfaces is varicose and vertical for Prandtl number less than about 9, sinuous 
oblique for Prandtl number between 9 and 15 and sinuous vertical for larger Prandtl 
number. For general spacing each of the four possible modes of instability is preferred 
for some range of Prandtl number and interface separation, with no clear pattern of 
preference, except that the sinuous oblique mode is preferred for widely separated 
interfaces. The growth rate of the preferred mode is largest for interfaces having 
separations of from 1 to 3 salt-finger lengths. 

1. Introduction 
This is the second of a three-part study of the stability of vertically oriented double- 

diffusive interfaces. The first part (Eltayeb & Loper 1990; herein referred to as Part 1) 
considered the stability of a single plane interface. In the present study we consider the 
stability of two plane parallel interfaces. This analysis is a stepping stone toward the 
physically most interesting case of a circular cylindrical interface, to be studied in the 
third part. 

Specifically we consider a vertical slab of compositionally buoyant fluid sandwiched 
between two semi-infinite regions containing fluid which is compositionally less 
buoyant, although the analysis is valid for the opposite arrangement. This 
configuration is sometimes referred to as a Cartesian plume. Material diffusivity is 
assumed to be negligibly small so that the interfaces remain sharp and well defined. The 
conditions under which this assumption is valid are discussed in 35.4 of Part 1. A 
stabilizing vertical thermal gradient is imposed on the system. 

In the absence of diffusion a static stable solution exists in which the slab of 
compositionally buoyant fluid has a uniform temperature deficit such that no density 
contrast exists across the interfaces. If the fluids on either side of the interfaces are 
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allowed to interact via exchange of heat and momentum, a static state is no longer 
possible. Thermal diffusion alters the density of the fluid close to the interfaces and this 
density difference induces a steady vertical motion. This flow and the associated 
thermal field are referred to as the basic state. The basic-state solution for the parallel 
interfaces being studied here has been presented in $3.2 of Part 1 (see equations (1 : 3.10) 
and (1 : 3.1 l)),t and graphed in figure 1 : 3. We shall investigate the stability of this 
basic-state flow to instabilities in the form of harmonic distortions of the plane 
interfaces. 

It was found in Part 1 that for an arbitrarily small compositional difference, the 
basic-state solution for the single plane interface is unstable for some range of 
wavenumbers for all values of the Prandtl number, CT. For most values cr, the preferred 
mode of instability is oblique; that is, the interface has variations in both the horizontal 
and vertical directions. This is in marked contrast to studies of flow next to a heated 
vertical wall (Gill 1966; Gill & Davey 1969; Dudis & Davis 1971; Holyer 1983) which 
found only vertical modes (i.e. modes having no variation in the horizontal direction) 
to be most unstable. 

A related problem, investigated by Lister (1987), concerns the stability of a slab of 
dense fluid of thickness 2a falling down the centre of a plane channel of width 2A 
otherwise filled with a less-dense fluid. Lister found that in the limit a / A  + 0, the plume 
is unstable to vertical long-wavelength perturbations. The present study differs from 
that of Lister in three respects. First, no thermal effects are included in his analysis 
while temperature variations, both in the vertical and the horizontal, play an important 
role in our analysis. This difference makes the two analyses fundamentally distinct. 
Secondly, the dense fluid is allowed to have a different viscosity from the surrounding 
fluid in Lister’s analysis, whereas we restrict attention to fluids having identical 
viscosities. This limitation eliminates from our problem the possible occurrence of 
instabilities driven by viscosity contrast (Schneider 1981 ; Hinch 1984). Third, the basic 
flow in Lister’s problem fills the channel and in the limit a /A  + 0 takes an arbitrarily 
long time to establish from an initial state of rest, whereas in our problem the basic flow 
decays exponentially with distance from the interface, and thus can be established in 
a relatively short time. 

In what follows we shall investigate the effect on the stability of the single plane 
interface of the addition of a second interface a distance 2X0 from it, forming a 
Cartesian plume. The instability is manifest as a distortion of the two interfaces. The 
modes of instability may be characterized by the symmetry of the distortions, with a 
varicose mode having deflections of the interfaces out of phase, and a sinuous mode 
having deflections in phase. Also of interest is the question of whether the preferred 
mode of instability is vertical or oblique. We shall see that each of the four types of 
instability is preferred for some range of plume thickness and Prandtl number. 

This paper is organized as follows. The stability mechanism of the single interface is 
discussed in $2, with emphasis on the reason why an oblique instability is preferred. 
The results of Part 1 discussed in $2 form one limiting case of the present analysis : an 
extremely wide Cartesian plume (Xo+ m). In order to gain better insight into the 
behaviour of the Cartesian plume, the opposite limiting case of a thin plume (X, + 0) 
is considered in §4? following the formulation of the full problem in $3. It is not obvious 
whether the thin plume will be unstable, neutral or stable in the limit X,+O; this 
question is addressed in $4. The full problem of a general plume (of arbitrary thickness) 
is analysed in $5.  The results of the analyses are summarized in $6. 

t In what follows equation ( x y )  of Part 1 will be referred to as (1 :y.x). and figure z of Part 1 will 
be referred to a figure 1 : z .  



Stability of vertical double-diflusive interfaces. Part 2 253 

In the interest of brevity, the algebraic details of the analysis are not presented here. 
These details are summarized in three appendices which are available upon request 
from the editorial office of this Journal or from either author. Appendix A contains the 
solution details for the thin plume, Appendix B contains those for the plume of 
arbitrary width and it is shown in Appendix C that the general solution presented in 
Appendix B reduces to that of Appendix A in the limit of a thin plume. 

2. Discussion of the instability of the single plane interface 
In Part 1 it was found that a sharp compositional interface across which momentum 

and heat may diffuse is prone to an oblique instability which occurs for any non-zero 
value of the compositional difference. The timescale, r,  for growth of the instability is 

where p is the density, (Ap) ,  is the compositional density contrast across the interface, 
v is the kinematic viscosity, 01 is the coefficient of thermal expansion, K is the thermal 
diffusivity, g is the acceleration due to gravity and y is the imposed stable temperature 
gradient. 

The influence of thermal diffusion is to enhance instability, while viscosity is 
stabilizing for nearly all wavelengths. At the simplest level of analysis, this effect is 
apparent in (2.1) ; an increase of K increases the growth rate of the instability, while an 
increase of v decreases this rate. 

The interface is unstable to perturbations of all finite wavelengths if the Prandtl 
number is less than 1.472. For larger values of the Prandtl number the interface 
becomes stable for moderate vertical wavelengths and large horizontal wavelengths ; 
however, the interface is unstable to perturbations of some wavelength for all values 
of Prandtl number. The preferred mode of instability is vertical if the Prandtl number 
is less than 0.065, while for larger values, oblique disturbances are preferred. The 
(dimensionless) wavelengths of the preferred modes are of unit order, indicating that 
the instability occurs on the salt-finger lengthscale, (vK/ayg)i. 

A striking feature of the results of Part 1 is that for all but very small values of the 
Prandtl number, oblique instabilities are preferred, in apparent defiance of Squire’s 
theorem (Drazin & Reid 1981). From a cursory analysis of equations (1 :4.23)-(1: 4.25) 
(reproduced as (2.7)-(2.9) below) governing wl, p1 and T,, it would appear that vertical 
instabilities (i.e. those with rn = 0) would be preferred as rn appears explicitly only in 
the parameter a2, the increase of which causes a decrease in the strength of the response 
to the forcing terms. However, the action of rn on the zeroth-order variables which 
appear in the forcing terms on the right-hand sides of these equations is such as to 
cause an oblique instability to be preferred. It may be seen from figure 1 : 12 that 
obliqueness, as measured by the size of the horizontal wavenumber, rn, increases in 
strength with increasing Prandtl number, suggesting that the cause of obliqueness 
arises principally from the variation with rn of the forcing terms on the right-hand side 
of (1 : 4.25) (reproduced as (2.9) below). The nature of the instability and the reason for 
its obliqueness will now be discussed. 

The fluid on the positive-x side of the interface (x being the Cartesian coordinate 
normal to the undisturbed interface) is compositionally dense, while that on the other 
side is compositionally buoyant. In order that the fluid far from the interface have the 
same density at the same height, the fluid at x large and positive must be hotter than 
that at x large and negative. This requires that the basic temperature profile T(x) have 
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a positive gradient in the vicinity of the interface. This gradient, when coupled with the 
imposed vertical static gradient, makes the unperturbed temperature profile weakly 
oblique in the vertical plane normal to the undisturbed interface. That is, the gradient 
of the second of (1 :2.12) combined with (1 :3.6) evaluated at x = 0 yields 

z ^ a  
CTR 2 4 2 ’  

WT = -+- 
where f is the upward unit vector, f is a unit vector normal to the undisturbed 
interface, r~ is the Prandtl number and R is a measure of the compositional jump (see 
(1 :2.11) or (3.2)). With R 4 1, the gradient is nearly vertical, but its obliqueness 
increases with increasing Prandtl number cr. This suggests that the obliqueness of the 
unperturbed temperature profile in the (x, z)-plane is the cause of the obliqueness of the 
preferred mode in the (x, y)-plane. 

Turning now to a more detailed analysis, we begin by noting that in real notation 
the harmonic displacement of the interface, given by (1 :4.1) (or by (3.9)) with D = 
R29,, is 

9 = ef = 2eexp (R2D2 t )  cos (c), 
where 8 is a small parameter, t is the dimensionless time and g = my + nz. Here y and 
z are Cartesian coordinates in the plane of the undisturbed interface with z being 
vertical, and m and n are the horizontal and vertical wavenumbers of the disturbance 
(each assumed positive). The dimensional form of the timescale R2t is given by (2.1). 
The perturbation grows if Re[9,] > 0, and it follows from the condition iul(0) = 9, 
that this occurs provided Re[iu,] > 0 at the interface. This may be clearly seen by 
substitution of the small-R expansion (1 :4.17) into (1:4.2) (i.e. (3.19) into (3.10)). 
Noting that the zeroth-order variables are real and the first-order variables are 
imaginary as employed in Part 1 and making use of (2.2), we obtain to order R 

ut - f x ud + Ruf = u, df/dz + R(iul) ij’, (2.3 a) 
ut - z“ z w! + Rwf = w, ij’ - R(iw,) dij’/dz, (2.3 b) 

(2.2) 

pt M p i  + Rp! = np, dfldz + nR(ip,) f ,  (2.3 c) 

and Tt x Ti+RT[ = T,ij’-R(iT,)df/dz. (2.3 d )  

Note that ui is in phase with the interface, which is directly displaced if (iu,) > 0. Recall 
that u,, w,, p1 and 

It may be verified by direct calculation of the solutions of the zeroth-order variables, 
given by (1 : 4.18), that in the vicinity of the interface with x > 0 the signs of the zeroth- 
order variables are as follows: u, < 0, p ,  < 0 and T, < 0, with wo > 0 for small 
x(< - 1.0) and 0 < w, for larger x. The relation between the zeroth-order variables 
and the deflected interface is depicted in figure 1, together with the behaviour of the 
basic-state vertical velocity and temperature, W and T. Note that the zeroth-order flow 
is that necessary to mould the basic-state flow w to the distorted interface. Further 
direct calculation reveals that u, and p ,  become more positive (i.e. decrease in 
magnitude) as m increases (with x held fixed), w,, becomes more positive and T, 
becomes more negative (increases in magnitude). As we shall see, the decrease in the 
magnitude of u, is the key to triggering an oblique instability. 

The character of (iu,) may be determined most directly by substitution of expansion 
(1 :4.17) (i.e. (3.19)) into the normal momentum equation (1 :4.4). At order R this is 

are odd functions of x while u,, w,, p ,  and T, are even. 

(d2/dx2 - a,) (iu,) = n[d(ip,)/dx - WU,,], (2.4) 
where a’ = m2 + n2 (2.5) 
is the square of the wavenumber in the (y ,  z)-plane. Note that 52, = 0 has been used to 
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FIGURE 1. A schematic depiction of the basic-state variables and the zeroth-order perturbations in the 
vicinity of the deformed single plane interface. The solid curved line denotes the deformed interface 
x = ~ ( 5 )  where 5 = my + nz. A static vertical temperature gradient is imposed on the system, making 
it hot above and cold below. The basic-state velocity w is odd in x, being principally downward on 
the right-hand side of the interface and upward on the left. The basic-state temperature Tis also odd 
in x, having a positive gradient in the vicinity of the interface. The presence of this gradient is 
necessary for the oblique mode of instability to be preferred. The zeroth-order velocity perturbations 
ui and w', are just those required to mould w to the deformed interface. 

obtain (2.4). This is a Poisson equation for an even function (iu,) having homogeneous 
boundary conditions. Noting that duJdx(0) = p,(O) = 0, we may multiply (2.4) by 
exp (-ax) and integrate from 0 to cc . After some integration by parts, we obtain 

~ ( x )  u,,(x) - nip,(x) exp (-ax) dx. (2.6) 1 
9-2 
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are solutions of equations (1 : 4.23)-(1: 4.25) 
subject to continuity conditions (1 :4.28) and suitable decay conditions. Noting the 
symmetries and complex character of the variables, this problem may be restated in 
terms of real variables on 0 < x < x as follows: 

for 0 < x < cc 

The first-order variables p , ,  w1 and 

(d’/dx2 -aZ) (ipJ = (iT,) + 2(dw/dx) u,,, (2.7) 

(d2/dx2 - a’) (iw,) = - (i T,) - n2(ipl) - nww, - (dui/dx) u,,, (2.8) 

(d2/dx2-a’) (iT,) = (iU.,)--nawT,--(dT/dx)u,; (2.9) 

a t x = O :  ip, = iw, = iT, = 0. (2.10) 

Also, the variables decay to zero as x+ co. Continuity of the derivatives at x = 0 is 
assured by the symmetry of the functions. 

Multiplication of (2.7) by xexp (- ux), integration from 0 to cc and integration by 
parts yields 

I,,= ipl(.x) exp (-ax) dn = exp ( -ax )  dx. (2.11) 
dx 

Similarly, multiplication of (2.9) by (ax2 + x) exp ( -ax ) ,  integration from 0 to co and 
integration by parts yields 

fi iT,(x) x exp (-ax) dx 

Combining (2.6), (2.11) and (2.12) we have 

where 

0, = u,+ u2+ u,, 

uj = J 4(x) exp (-ax) dx, 
0 

(2.13) 

(2.14) 

(2.15) 

n d n 
V,($ = -u&x)-[x~?(x)], a dx 

V,(x) = -(ax2 + x) 

K(x) = -,(axz+x)iw,(x), 8a 

dx 
nu 
8u 

Using (1:3.5), (1:3.6), (1:B lo), (1:B 11) and (1:B 17), we have 

and 

(2.16) 

(2.18) 
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FIGURE 2. Graphs of Q, and its components as a function of m for (T = 5.0 and n = 0.38. The 
magnitude of u was chosen to be close to that of water, then the value of n taken from figure 1 : 12. 
Components which become more positive with increasing m cause the oblique instability to be 
preferred. (a) Component U,, representing the effect of the nonhomogeneous term - nwu, appearing 
in (2.3) on Q,, is destabilizing and effectively independent of m. Component U2, representing the 
interaction of the first-order modes is destabilizing, but decreases with increasing m. The only 
component to increase with increasing m is U,, representing the effect of the zeroth-order non- 
homogeneous terms appearing in (2.9) on Q,. (b) Component U, regraphed together with its two 
parts. Part U,,, representing the effect of the term containing is destabilizing but decreases in 
magnitude as m increases, inhibiting oblique instability. Part U3*, representing the effect of the term 
containing (dT/dx) u,, is stabilizing, but becomes more positive with increasing m sufficiently rapidly 
to counteract the former effect and cause an oblique instability to be preferred. 

where A .  = ,u; 
2hj(3n2 + 2 4  ’ 

(2.19) 

A; = pj+a2, (2.20) 

and ,u;+,uj+n2 = 0. (2.21) 
The values of wj and Bj are given by (1 : B 19) and (1 : B 30). 

The variables SZ, and Uj are plotted versus m in figure 2(a) for cr = 5.0 and n = 0.38. 
As m increases from 0 to 0.5, O2 changes from negative to positive, indicating that a 
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FIGURE 3. A schematic depiction of trends of the variables near the deformed interface with increasing 
m which leads to an oblique instability. A first-order variable appearing above (below) a horizontal 
line indicates that it is positive (negative) at that location. A sloping arrow pointing toward the 
horizontal line indicates that the variable decreases in magnitude with increasing m. 

vertical mode is stable for this choice of cr and n,  while an oblique mode is unstable. 
The contribution denoted by U, is approximately independent of m and is destabilizing. 
This represents a mechanical instability akin to the Kelvin-Helmholtz mechanism and 
is the dominant contribution to SZ, for large m. The contribution denoted by U, 
represents the interaction of the first-order modes. Although this contribution is 
positive and hence destabilizing, it becomes less positive as m increases; that is, it tends 
to make the vertical mode be preferred. The effect of U,  is largely counteracted by U,, 
representing the effect of the terms proportional to cr appearing in (2.9). This 
contribution is negative and hence stabilizing but it becomes more positive with 
increasing m, indicating that this term is the cause of the oblique instability, as 
previously conjectured. 
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The individual effect of the two terms contributing to U, is quantified in figure 2(b). 
The curve labelled U,, represents the effect of the term containing wT, while that 
labelled U,, represents the effect of the term containing (dT/dx)u,. Note that these 
contributions largely cancel, producing a sum U, that is significantly smaller than each. 
The contribution due to wT, is destabilizing but decreases in magnitude as m increases, 
favouring a vertical instability, while that due to (dT/dx) uo is stabilizing, but becomes 
more positive with increasing m sufficiently rapidly to counteract the former effect and 
cause an oblique instability to be preferred. 

The physical mechanism of oblique instability may be summarized using (2.3) and 
restricting attention to 0 < x as follows. The zeroth-order normal velocity, u;, is 
negatively correlated with d+/dz (see figure 1) but decreases in magnitude with 
increasing m. This velocity advects the basic-state temperature gradient (dT/dx) 
(which is positive for 0 < x) producing a thermal perturbation, TI, which is negatively 
correlated with d?/dz and which decreases in magnitude with increasing m. This 
thermal perturbation produces, via the buoyancy term, a pressure perturbation, pi ,  
that is positively correlated with 7 and hence is stabilizing. However, its magnitude 
decreases with increasing m sufficiently rapidly that an oblique instability is preferred. 
These interactions are depicted schematically in figure 3. 

We anticipate that an oblique mode of instability will be preferred in the present case 
of a Cartesian plume because in the limit of widely separated interfaces, each behaves 
as an isolated interface. The precise range of parameters for which oblique instability 
is preferred is determined by the analyses described in $64 and 5. 

3. Formulation of the problem 
We consider an infinite extent of a Boussinesq fluid having a density depending on 

both temperature, T, and concentration, C, of buoyant material; the Boussinesq 
equation of state is given by (1 :2.1). We assume that in the undisturbed state, the 
concentration has the 'top-hat' profile (see figure 4): 

'= \co for x,, < 1x1, 
(3.1) 

(c0+i: for 1x1 < X ,  

forming a Cartesian plume. 
The dimensionless governing equations are given by (1 : 2.7)-( 1 : 2.10). These 

equations contain two dimensionless parameters: the Prandtl number, g, and the 
Reynolds number, R, where 

fJ = V / K ,  R = P?(gK3/a3y31J5) ' .  ( 3 4  

X, = (CIYg/VK)fX,, .  (3-3) 

An additional parameter is the dimensionless plume half-width 

As in the case of the single interface, the variables may be divided into a static state, 
given by (1 : 2.12), a steady basic state, driven by the forcing and denoted by an overbar, 
and a perturbation of infinitesimal amplitude, e, denoted by a dagger: 

(3.4) I u = WZ"+eu?, c= c0+c+ect, 
T = T, + (Z - zo)/rR + T+ eTt, 

p = p o - ( ~ - ~ , ) / ~ ~ + ( z - ~ 0 ) 2 / 2 ~ R + ~ + e p t .  

Note that the basic-state velocity has only a vertical component and the basic-state 
variables are functions only of the normal coordinate, x. 
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FIGURE 4. A schematic depiction of the Cartesian plume. The dotted line denotes the undeformed 
position of a plume of width 3co = 0.5. The solid lines denote the positions of the interfaces for a 
varicose mode as given by (3.7) having n = 1.0, m = 0 and F: = 0.1. The dashed line denotes the 
position of the left interface for a sinuous mode, given by (3.8). The concentration, C, of buoyant 
material between the interfaces is larger than that outside. 

The basic-state solution, i.e. functions w and T, for the case of two parallel interfaces 
is given in $3.2 of Part 1. Note that these are even functions of x; expressions valid for 
0 < x are as follows. 
For 0 < x < x,: 

for x, < x: 

W = - Im [exp (- kx,) cosh (kx)] ,  'I 
T = Im [i exp ( - kx,) cosh (kx)]  - 1 ; J (3.5) 

(3.6) 1 w = Im [exp (- kx)  sinh (kx,)], 
T = -Im[iexp(-kx)sinh(kx,j], 

where k = l/i  = (1 +i)/2/2. 
The perturbation variables are governed by (1 : 2.16)-( 1 : 2.19). With W and T being 

even functions of x, these equations admit solutions of two parities : even parity, having 
all variables but f.  ut even in x, and odd parity, having all variables but R.ut odd in 
x. We shall see that these parities may be preserved by considering only situations in 
which the deflections of the two interfaces are out of phase or in phase. If the 
deflections are out of phase, the plume has a varicose shape and the even parity is 
preserved. If the deflections are in phase, the plume has a sinuous shape and the odd 
parity is preserved. Where necessary in what follows, we shall denote solutions having 
even parity (varicose mode) by a superscript u, and those having odd parity (sinuous 
mode) by superscript s; a superscript p will on occasion be used to denote either mode. 

The locations of the interfaces of a varicose plume may be described by 
x" = -t [xn + T(Y,  Z, t)l, (3.7) 

and those of a sinuous plume by 
xs = -tX,+T(Y,Z,t) (see figure 4) where 

~ ( y , z ,  t )  = ~{exp[i(my+nz)+L?t]+c.c.j. 

If m = 0 ?he mode is said to be vertical, while if m + 0 it is oblique. 
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As in Part 1 we may assume that the perturbation variables have the same harmonic 

{ut,pt, TT, Ct} = { id ,  up, wp, inpa, TI,  Cl}  exp [i(my + nz) + Ot)] +c.c. (3.10) 

Noting that the perturbation in composition is identically zero (see (1 : 4.1 l)), the 
perturbation equations are (1 : 4.3), (1 : 4.5)-( 1 : 4.7) and (1 : 4.13), which are reproduced 
here : 

variation as the interface : 

dup/dx+mvp+nwp = 0, (3.11) 

(d2/dx2-a2)pP- TP+2iRup(dw/dx) = 0, (3.13) 
(d2/dx2 - a2 - a9 up = - mnpp, (3.12) 

(3.14) 
(d2/dx2 -a2- crsza) Tp-icrRup(dT/dx) - wb = 0, (3.15) 

where G I =  + inRw(x) (3.16) 

is the Doppler-shifted frequency and a is given by (2.5). 
Equations (3.11)-(3.15) are to be solved subject to the conditions that the 

perturbation variables decay with distance from the interfaces, the full variables (basic 
state plus perturbation) be continuous across the interfaces and the interfaces be 
material surfaces. If we take advantage of the parity of the solutions, the conditions on 
the interface near x = -x, may be replaced by symmetry conditions at x = 0, and 
attention may then be restricted to 0 < x. The auxiliary conditions are 

(3 .17~)  
(3.17 b) 
(3 .17~)  
(3.17 d) 

at x = x,: Rub = -iQp; (3.17e) 

(even or varicose mode) (3.17f) 

Condition (3.17d) may be verified by combining the x-derivative of (3.11) with the 
normal momentum equation (1 :4.4), to obtain 

d(mv + nw + np)/dx + (a2 + a) u = 0. (3.18) 

Since a, u and dv/dx & continuous across the interface, it follows that d(w+p)/dx 
must be also, and (3.174 follows from (3.17~). The factor R appears in (3.17e) because 
the velocity has not been scaled as length divided by time. 

As was done in Part 1, the dependent variables and the parameter Q may be 
expanded in a power series in R, assuming R to be small: 

(d2/dx2 - a2 - wp- iRuP(dw/dx) + Tp = - n2pP, 

as x+ co : up, vb, wp,pp, Tp, decay to zero; 
up, vp, wp, pp, TP, dd ldx  and d TP/dx are continuous ; at x = xO : 

(dwp/dx),=,,- = (dwp/dx),_,,+ + 1, 

(dpP/dx>,=,,- = (dPP/dX),=,,, - 1 ; 

at x = 0: either 

u" = dv"/dx = dw"/dx = dp"/dx = dT"/dx = 0 

or dus/dx = vs = ws = ps = Ts = 0 (odd or sinuous mode). (3.17g) 

Now 
a=O a=l 

= R[Qf + inw(x)] + R20$ + . . . . (3.20) 

The principal goal of this paper is determination of the stability of the Cartesian 
plume. Stability is determined by the first of the sequence Of, O{, . . . whose real part is 
not identically zero for all values of the wavenumbers m and n. We shall see that Of' 
is imaginary while Q{ is real, so that it will suffice to solve the sequence Oi only up to 
cx = 2. 
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Combining (3.17e), (3.19) and (3.20) gives 

and 

= i[u{(x,) - nw(x,)], 

0: = iuf(xo). 

(3.21) 

(3.22) 

These expressions are to be used to determine the growth rate of the disturbance of 
the interface. 

4. Stability of a thin plume 
Before solving the problem of a plume of arbitrary width formulated in $3. it is 

informative to consider the simpler problem of the instability of a thin plume. The 
simplified problem is obtained by taking the limit x,, < 1 .  The principal goal of this 
section is the determination of the functions Qt(rn, n; x,, cr) for il = 1 and 2, which 
describe the stability of the thin Cartesian plume. We shall see that the thin plume is 
unstable for all values of c. That is, for every value of c there exists a set of values of 
rn and n such that either 0; or 52; (or both) is positive. Particular attention will be paid 
to identification of the preferred mode of instability, i.e. the maximum possible value 
of Q, for given c and the corresponding values of p, rn and a. The principal result of 
this section is displayed in figure 7. 

In the limit x,, 6 1, the boundary conditions can be reformulated so as to eliminate 
the region 0 < x < x, from direct consideration. This reformulation takes differing 
forms for the varicose and sinuous modes. For varicose modes, integration of 
(3.13)-(3.15) from x = 0 to x = xo- and use of jump conditions (3.17&d), and 
symmetry conditions (3.17f) yields the following : 

at x = x,,+ 

(4.1) I dw"/dx = - 1 + O(X,), dpv/dx = 1 + O(X,), 
dTv/dx = 0 + O(X,), dvv/dx = 0 + O(x,), 

u' + mx, vu  + nx, wv + O(x:) = 0. 

For sinuous modes, the conditions on u, w, p, and T follow from the Taylor 
expansions of odd functions plus the jump conditions (3.17b-4. The value of u then 
follows from (3.18). 

At x = x,+ 

(4.2) 

(4.3) 

x0/2/2, (3.21) and (3.22) may be 

(4.4) 

I W' = x,,[dw'/dx+ 11 + O(X;), 

Ts = x,, dTs/dx + O(X~), 
ps = x,[dp'/dx- I] + O ( X ~ ) ,  
us = X, du'/dx + O(X:), 

mdvs/dx + nd(ws +pS)/dx + (a2 + a) us = 0. 

Using (4.ld) and (4.2d) and noting that w(xJ 
expressed as 

0: = - ix,[rnu~(x,) + nw:(x,,) + n/2 /2] ,  

Qi = - ix,[rnz$'(x,,) + nw~(x,,)], 

The variables uf, wt ,  &, and T! are found by solving the sequence of problems which 
result from substitution of assumed forms (3.19) into (3.13)-(3.15) and conditions (4.1) 
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FIGURE 5 .  A plot of the normalized phase speed, w,,/x,,, of the thin plume versus vertical 
wavenumber, n, for selected values of the vertical wavenumber m. The solid curves are for the varicose 
mode and the dashed are for the sinuous mode. A positive phase speed indicates that lines of constant 
phase move upward. The phase speed of long-wavelength (n < 0.44) sinuous modes having very small 
m is downward relative to the far fluid; all other modes have upward phase speeds. All varicose modes 
have larger phase speeds than any sinuous mode. As n becomes large all curves approach the 
asymptote 1/2/2, which represents the normalized speed of the basic state at the edge of the plume. 
As m becomes large the distinction between varicose and sinuous modes becomes small. 

or (4.2); then the functions 0f(m, n ;  xo, a) and 0{(m, n ;  x,, a) are found from (4.3)-(4.6). 
The details of these calculations are presented in Appendix A which is available from 
the Journal office or from either author; the results are as follows. 

To leading order 
~ f ( m ,  n, x,,, a) = - inx, bf(m, n), 

where 

and (4.9) 

where A j  and Aj are given by (2.19) and (2.20). Note that .sZf is independent of the 
Prandtl number, CT, and linear in xo. Also note that 

3 

C Aj” A j  = fM, 
j=1 

where Mk is defined by (1 :4.32). 
As in Part 1, 

r s  1 

(4.10) 

for any functionf. Consequently both 0; and 0s are imaginary. As in the case of a 
single interface, this zeroth-order mode is neutrally stable, but unlike that case, 0, is 
not zero. The loss of symmetry with the addition of the second interface introduces a 
phase drift of the neutral distortion. However, as in the case of a single interface, we 
must go to higher order to determine the stability of the thin plume. 
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FIGURE 6(a,b). For caption see facing page. 

The phase speed of this neutral disturbance of the plume, - 
WBph = xon$ (4.1 1) 

varies linearly with the plume thickness. The normalized phase speed wph/x, is plotted 
versus the vertical wavenumber, IZ, for several values of the horizontal wavenumber, m, 
in figure 5.  Since M3 < 0 for all values of the wavenumbers, the varicose waves on the 
interface move upward relative to the local fluid, which has normalized upward speed 
1/2,’2, while sinuous waves move downward. Relative to the far fluid, all varicose 
waves move upward, as do all sinuous waves having 0.44 < n, but those having 0 < 
n < 0.44 and m sufficiently small move downward relative to the far fluid. As m and/or 
n becomes large both types of wave tend to become stationary with respect to the local 
fluid. Note that the thin-plume analysis is valid provided nx, 4 1, so that the vertical 
wavelength of the disturbance is long compared with the plume thickness. It follows 
that GI is small; the waves migrate along the plume slowly. 
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FIGURE 6. Isolines of the normalized growth-rate functions for the thin plume, defined by (4.15), on 
the (rn,n) wavenumber plane. The functions Ei  and c, whose isolines are plotted in (a)  and (b) 
respectively, represent the effect of thermal diffusion on the sinuous and varicose modes, and E; and 
q, whose isolines are plotted in (c) and (d) ,  represent the effect of viscosity. Contour intervals are 0.01 
for (a) ,  0.002 for (b), 0.005 for (c) and 0.003 for (d) .  Thermal diffusivity destabilizes both modes for 
all wavenumbers. Viscosity stabilizes the varicose mode for all wavenumbers and destabilizes the 
sinuous mode for moderate and small values of the vertical wavenumber, n; viscosity weakly 
stabilizes the sinuous mode for large values of n. 

To next order in powers of R, SZ, is real, and the stability of the plume is determined. 
The expressions for SZC(m, n ; x,, v) are developed in Appendix A on file in the Journal 
office. Each of these varies as x f ;  a vanishingly thin plume is neutrally stable. Also, as 
in the case of a single plane interface, each is a linear function of the Prandtl number, 
o-, with the portions independent of v representing the effect of thermal diffusivity while 
those proportional to o- represent viscosity. 

We may write 
~ { ( m ,  n ; x,, c) = xi sz"C(m, n ; v), (4.12) 
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FIGURE 7. Plots of the maximum normalized growth rate 62mRar (in a) and the optimal wavenumbers 
(in b) versus the Prandtl number cr for the sinuous and varicose modes for the thin plume. The 
preferred mode is indicated by the solid lines. The varicose mode is preferred if cr < 9.06, while the 
sinuous mode is preferred for larger Prandtl numbers. The maximum growth rate decreases with 
increasing cr for cr < 9.06, and grows roughly linearly for 9.06 < cr. The preferred varicose mode is 
vertical (m = 0) while the preferred sinuous mode is oblique for 9.06 < u < - 15 and vertical for 
larger values of u. 

where the normalized growth rate fit is known to be linear in g: 

@(m, n ;  cr) = ~ ( ( m ,  n) + c ~ ~ f ( m ,  n). (4.13) 

This functional dependence is virtually identical to that for the single plane interface; 
compare (4.13) with (1 :4.30). The only difference is that there are two modes to 
consider in the present case, while only one exists for the single interface. As in 
that case, the stability character may be deduced from the isoline plots of the functions 
t?f(nz, n). These plots are presented in figure 6, with parts (a), (b), (c), ( d )  showing q, E i ,  
q, c?;, respectively. These plots should be compared with those in figure 1 : 11. 

Recalling that the term E’ may be thought of as representing the effect of thermal 
diffusivity while Zf represents viscosity, it may be deduced from these plots that thermal 
diffusion is destabilizing for both varicose and sinuous modes, while viscous diffusion 
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FIGURE 8. A plot of the phase speed of the preferred mode versus the Prandtl number 
for the thin plume. 

stabilizes the varicose mode, but destabilizes the sinuous mode. The destabilizing effect 
of thermal diffusivity may be understood by the discussion presented in 92 and the 
stabilization of the varicose mode by viscosity is as expected, but the destabilization of 
the sinuous mode by viscosity is unexpected. 

For small Prandtl number, the varicose mode is more unstable than the sinuous 
mode. As the Prandtl number increases from zero, the varicose mode becomes less 
unstable, with the preferred mode shifting to larger values of n. At the same time, the 
sinuous mode becomes more unstable, with a slight shift of the preferred mode it0 

smaller values of n. 
The preferred mode of instability and the associated maximum growth rate may be 

found by maximizing expression (4.13) for fif over all m and n for both parities for a 
specified value of c. The results are presented in figure 7, which contains in part (a) a 
plot of b",,,, and in part (b) mmax and n,,, versus cr. This plot should be compared 
with figure 1 : 12. From this it may be seen that the varicose mode is preferred for 
Prandtl numbers smaller than - 9 while the sinuous mode is preferred for larger 
Prandtl numbers. The preferred varicose mode always is vertical (i.e. has a horizontal 
wavenumber, m, of zero), while the preferred sinuous mode is oblique for Prandtl 
numbers less than - 15. Thus the preferred mode has a non-zero horizontal 
wavenumber for - 9 < c < - 15. The preferred wavenumber jumps discontinuously 
at the cross-over value - 9, while the preferred growth rate varies continuously. The 
effect of a non-zero horizontal wavenumber on the preferred mode is small. If we set 
m = 0, the cross-over point becomes cr = 9.255, and the value of f iamaX is changed only 
slightly. The preferred modes of the thin plume may be summarized as follows: 

o < c r < - 9  varicose vertical ; - 9 < cr < - 15 sinuous oblique; 
- 1 5 < g  sinuous vertical. 

Combining figures 5 and 7, yields the preferred phase speed given in figure 8. The 
phase speed decreases smoothly from 1.28 at cr = 0 to 1.10 for g - 9, then decreases 
sharply to 0.07 and decreases very slowly with increasing cr thereafter. 
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5. Stability of a plume of arbitrary width 
We now consider general stability problem formulated in 53. As in 54, the goal of 

the analysis is evaluation of the functions Qf(m, n ;  x,, a) and Qf(m, n ;  x,, a), from 
which the stability of the plume may be determined. We shall see that the plume is 
unstable for all prescribed values of x,, and a. That is, for every set of values of (x,,, cr) 
there exists a set of values of m and n such that either 52; or 52; (or both) is positive. 
In this section, particular attention will be paid to identification of the preferred mode 
of instability, i.e. the maximum possible value of 52, for given x, and a and the 
corresponding values of p, m and n. The preferred modes may be characterized as 
either varicose or sinuous and either vertical (m = 0) or oblique, giving a total of four 
types of modes. The principal result of this section is the regime diagram given in figure 
11, showing the preferred modes on the (x,, a)-plane. 

The necessary calculations are outlined in Appendix B available from the Journal 
office or from either author, and the results are summarized in the following. It should 
be noted that these results are subject to two stringent checks : as x,, becomes large, the 
results should agree with those of Part 1, while as x, + 0, the results should agree with 
those of 54. Appendix C containing a calculation showing that as x,+O the results 
obtained in Appendix B agree with those in Appendix A is available from the Journal 
office or from either author. 

To dominant order in R ,  52 is independent of a: 

3 

d; = sin (\/2x,) exp ( - 2/ 2x,) + C hi A j  exp ( - 2 4  x,), 

and Q = isin (d2x,)) exp ( -  2/2x,) - c hi exp ( - 2 4  x,). (5.3) 

(5.2) 
j=l 

3 

j=1 

The expressions 52f are imaginary, indicating neutral stability to this order. As x, 
becomes small, these expressions reduce to those given by (4.7)-(4.9). In the limit 
x,+co, S Z f + O ,  in agreement with ( 1  :4.22). 

As in the cases of a single plane interface and a thin Cartesian plume, 52; is real and 
linear in the Prandtl number, a: 

(5.4) 

The extreme (maximum and minimum) values of c{ and cf over all possible values of 
m and n are plotted versus x, in figure 9, with the maximum values of c, given in part 
(a) ,  the maximum values of c, in part (6)  and the minimum values of c, in part (c). The 
minimum values of c,) (not shown) are identically zero. 

It may be seen from figure 9 that the difference between the varicose and sinuous 
values becomes small as x, becomes large, as anticipated. The value of c, is always 
positive, indicating that thermal diffusivity is always destabilizing. Also, c1 may have 
positive values, particularly for moderate values of x,, indicating that viscosity may be 
destabilizing. The maximum values of c, and c, occur for values of x, between 1 and 
3, suggesting that plumes of these widths are more unstable than those which are either 
thinner or thicker. For moderate values of x,,, the sinuous mode is preferred when a 
is small, while the varicose mode is preferred for large a .  

The wavenumbers associated with the maximum and minimum values of c, and c, 

@(m, n ;  x,, a )  = c{(m, n, x,) + acf(m, n,  x,). 
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FIGURE 9. Plots versus x,, of the maximum values of co (in a)  and c1 (in b), and the minimum 
value of c, (in c). (The minimum of c, is exactly zero.) 
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are displayed in figure 10, with m and n for c, maximum given in part (a), m and n for 
el maximum given in part (b) and n for c1 minimum given in part (c).  The optimal 
values of m for c1 minimum are identically zero. It may be seen that the maximum 
values typically occur for oblique modes (having m $. 0). A mode shift occurs near 
x, = 1.08 in the preferred varicose minimum of c,. 

The results shown in figures 9 and 10 (plus some additional data for larger values of 
x,) may be used to determine the nature of the preferred modes for the two limits 
v = 0 and v = cc. For cr = 0, the preferred modes as a function of x, are 

0 < x, < 0.67 varicose vertical; 

0.67 < x, < - 4.9 sinuous vertical; - 4.9 < x, < - 8.6 sinuous oblique; 

- 8.6 < X, sinuous vertical. 

For cr = cc, the preferred modes as a function of x, are 

0 < x, < 0.88 

0.88 < x, < 3.56 

3.56 < x, < - 5.0 

- 5.0 < X, 

sinuous vertical; 

varicose oblique; 

sinuous oblique; 

varicose oblique. 

The preferred mode in general is that which has the most rapid growth rate for given 
values of x, and v, and is obtained by maximizing over m and n for both p = u and 
/3 = s. The result of this operation is summarized in a regime diagram given in figure 
11. This displays the (x,, cr)-plane. divided into four regimes labelled Sv, So, Vv and Vo, 
corresponding to the four possible types of modes previously identified, i.e. sinuous 
vertical, sinuous oblique, varicose vertical and varicose oblique. Note that this diagram 
is consistent with (i) the results given in Part 1 as xo+ cc. (ii) with the results given in 
$4 as x, + 0 and (iii) with the summary given in the previous paragraph in the limits 
cr+ 0 and cr+ oc: ; specifically, the isoline plots given in figures 1 : 11 and 6 correspond 
to and agree with the corners of figure 1 I, while the curves of maximum growth rate 
and preferred wavenumber given in figures 1 : 12, 7, 9 and 10 correspond to and agree 
with the edges of figure 11. Figure 11 shows no clear pattern of preferred mode, with 
each of the four types of modes being preferred in at least one region. The sinuous 
oblique mode is preferred for large values of x,, but the distinction between sinuous 
and varicose modes fades as x, becomes large (e.g. see figures 9 and lo). The growth 
rate is largest in region Vo; see figure 9(b) for the growth rate when (r = 00. 

6. Summary 
The stability of two plane parallel vertically oriented interfaces within an infinite 

extent of fluid has been investigated, in the case that there are identical sharp jumps in 
composition across each interface, such that the fluid between the interfaces has one 
composition and that outside the interfaces has another. Material diffusivity is 
neglected, so that the interfaces remain sharp and identifiable. A density jump is 
assumed to accompany the jump in composition, and this acts to drive vertical motions 
parallel to the unperturbed interfaces. The entire fluid has a stabilizing vertical 
temperature gradient, so that the basic-state vertical motion tends to induce a local 
change in temperature which is balanced by lateral thermal diffusion. We investigate 
the stability of this basic state and of the shapes of the two interfaces. 
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FIGURE 10. Pots versus xo of the optimal values of wavenumbers rn and n which achieve the maxima 
plotted in figure 9: (a), (b), and ( c )  correspond to (a), (b), and ( c )  of figure 9. In each part, the solid 
curve indicates the sinuous mode and the dashed curve indicates the varicose mode. Note that all 
minima of c1 occur for rn = 0. 

The governing equations admit solutions with even or odd parities. These parities 
are best remembered by the corresponding shapes of the deformed interfaces: either 
varicose (even parity) or sinuous (odd parity). The case of closely spaced interfaces (i.e. 
a thin plume) is treated separately (in 94) from the general case of interfaces having 
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FIGURE 1 1 .  Regime diagram, displaying on the (xo, o)-plane locations where the preferred mode is 
either sinuous vertical (Sv), sinuous oblique (So), varicose vertical (Vv) or varicose oblique (Vo). The 
distinction between varicose and sinuous modes fades as xo increases; differences in the growth rates 
are less than 1 YO for x,, greater than about 7. Isoline plots of the growth rates of the varicose and 
sinuous modes on the (m, n)-plane corresponding to the corners of this figure are given as follows: 
(i) for x, = 0 and c = 0 in figures 6(a )  and 6(h), (ii) for xo = 0 and CT = m in figures 6(c) and 6(d), 
(iii) for xu = co and u = 0 in figure I : 1 I (a)  and (iv) for xu = co and cr = co in figure 1 : 11 (h). Curves 
of the maximum value of Q, and the optimal values of rn and n for the four edges of this figure are 
given as follows: (i) xu = 0 in figures 7(u)  and 7(b), (ii) u = 0 in figures 9(a) and 10(a), (iii) x, = nj 
in figure 1 : 12 and (iv) u = a in figures 9(b) and 10(b). 

arbitrary spacing (in $5) .  The results of the general case are found to agree both with 
those of the single interface found in Part 1 and with those of the thin plume, providing 
a strong check on the accuracy of all three results. 

It is found that the flows and interface shapes are unstable for some wavenumber for 
all values of the Prandtl number and interface spacing. Four possible modes of 
instability are identified, i.e. sinuous vertical, sinuous oblique, varicose vertical and 
varicose oblique. The principal results of the stability analyses for the thin plume and 
general piume are presented in figures 7 and 11. Figure 7 (a) shows for the thin plume 
that the varicose mode is most unstable for Prandtl number v < N 9 while the sinuous 
mode is preferred for larger value of v, while it may be seen from figure 7(h) that the 
preferred varicose mode is vertical, while the sinuous mode is oblique for - 9 < cr < - 15 and vertical for larger values. Figure 11 displays the regime diagram for the 
general plume on the (x,, cr)-plane. This plane is divided into regimes labelled Sv, So, 
Vv and Vo, corresponding to which of the four possible modes is dominant for that 
value of x, and CT. There is no clear pattern of preference, except that the sinuous 
oblique mode is preferred for a wide plume. The growth rate is largest for plumes of 
dimensionless width between 1 and 3. 
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is publication #355 of the Geophysical Fluid Dynamics Institute, Florida State 
University, Tallahassee, Florida. 
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